IDENTIFYING THE MISSING IN CYPRUS
Gulbanu Zorba¹, Katerina Papaioannou¹, Adrienne Barranco², Erin Sweeney², Jon Davoren²
¹Committee on Missing Persons in Cyprus (CMP) Anthropological Laboratory
²Bode Cellmark Forensics

After this presentation, attendees will learn about events in Cyprus that led to over 2,000 missing persons, how a bi-communal committee of Greek and Turkish Cypriot members was established to identify the missing, how a multi-disciplinary and multi-agency effort can effectively identify missing persons, and the lessons learned that can be applied to other post-conflict identifications worldwide.

The Committee on Missing Persons in Cyprus (CMP) is a bi-communal body established in 1981 by agreement between the Greek and Turkish Cypriot communities, under the auspices of the United Nations, to determine the fate of missing persons due to inter-communal conflicts from 1963-64 and 1974. The mandate is to return the remains of missing persons to their families in order to arrange for proper burial and closure. The CMP is one of few bi-communal projects on the island. They have been working successfully without the settlement of the island’s reunification with equal representation from both communities. It is hoped that the healing of old wounds assists the reconciliation between the communities.

The on-going project includes archaeological, anthropological and genetic phases. As of April 28th, 2016, 1,113 individuals have been exhumed and 638 have been identified. Approximately 1,000 skeletal remains are undergoing genetic testing. This presentation will focus on technical aspects of genetic testing but will also cover examples of multidisciplinary work.

The genetic phase consists of an international multi-agency collaboration. The CMP provided thousands of family references typed using Promega’s PowerPlex16 kit and a database of the profiles is maintained by Bode Cellmark Forensics (Bode). Batches of skeletal samples are sent to Bode to be tested and compared to the family profiles. Family and intra-skeletal match reports are then returned to the CMP. An optimized workflow has resulted in searchable profiles from 76% of samples tested using standard sensitivity. When needed, samples are also tested for mtDNA or Y-STRs using PowerPlexY23. The CMP is evaluating the use of PowerPlex Fusion on future cases and previously unsolved cases.

Examples will be presented that highlight DNA testing challenges and complexities of kinship matching. Other data such as variations in success rate amongst burial sites will also be included. While every identification effort is unique, the CMP project serves as a model project for post-conflict identifications. The lessons learned during this project could benefit large scale human identification projects worldwide.