A FORENSIC LABORATORY TESTS THE BERKELEY MICROFABRICATED CAPILLARY ARRAY ELECTROPHORESIS DEVICE

Greenspoon SA1, Yeung SHi2, Johnson K3, Chu EM4, Rhee HN1, McGuckian AB5, Crouse CA5, Chiesl TN4, Barron AE6, Scherer J4, Ban JD1 and Mathies RA4

1Virginia Department of Forensic Science, Richmond, VA
2UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA
3Virginia Commonwealth University, Department of Forensic Science, Richmond, VA
4Department of Chemistry, University of California, Berkeley, CA
5Palm Beach County Sheriff’s Office Crime Laboratory, West Palm Beach, FL
6Department of Chemical and Biological Engineering, Northwestern Univ., Evanston, IL

The Berkeley microfabricated Capillary Array Electrophoresis (μCAE) device, a 96 microcapillary array capable of simultaneously separating and capturing data for PowerPlex® 16 amplified samples in less than 30 minutes, was demonstrated at Berkeley to provide high quality STR profiles using both simulated and non-probative casework samples (1). A pre-commercial prototype instrument was installed at the Virginia Department of Forensic Science (VDFS) for testing by forensic scientists as part of a collaboration between VDFS, the Palm Beach County Sheriff’s Office (PBSO) and the Mathies’ laboratory. The initial step was mastery of the instrument operation which was verified by the successful electrophoresis and short tandem repeat (STR) profiling of concordance samples amplified with PowerPlex 16. The practical application of the μCAE device was then demonstrated by accurate analysis of nineteen non-probative casework samples, the results of which were consistent with previous typing data. Both sensitivity series and mixture samples were successfully typed with PowerPlex 16 as well as mock sexual assault samples analyzed using PowerPlex Y. Both a student intern and a scientist from PBSO were able to successfully operate the μCAE system following several days of training.

The microchip instrument performance was assessed as a function of both resolution and precision. Resolution measurements were performed following the protocols outlined in Buel et. al (2). Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer (polyDuramide) was assessed using resolution measures and ultimately adopted given its improved ease of use and the greater number of successful capillaries.

This mastery of operation of the μCAE device by forensic scientists establishes the capacity of this technology to be transported out of the research venue and into a practitioner laboratory. Moreover, it demonstrates the feasibility of the paradigm shift from large conventional capillary electrophoresis systems to microfabricated devices. Next generation microcapillary systems slated for testing will contain additional integrated features, such as sample clean-up prior to capillary injection (3) and on-chip PCR, thus propelling the development and potential usefulness of the microchip capillary system for forensic sample analysis.
References